This HTML5 document contains 19 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dctermshttp://purl.org/dc/terms/
vivohttp://vivoweb.org/ontology/core#
marcrelhttp://id.loc.gov/vocabulary/relators/
n2http://hub.abes.fr/springer/periodical/11082/1993/volume_25/issue_6/B916A09733AD5B9BE053120B220A19A2/
n12http://hub.abes.fr/springer/periodical/11082/
n10http://hub.abes.fr/springer/periodical/11082/1993/volume_25/issue_6/B916A09733AD5B9BE053120B220A19A2/copyrightholder/
n5http://hub.abes.fr/springer/periodical/11082/1993/volume_25/issue_6/
bibohttp://purl.org/ontology/bibo/
rdachttp://rdaregistry.info/Elements/c/
hubhttp://hub.abes.fr/namespace/
n13http://hub.abes.fr/referentiel/springer/periodical/11082/articletypes/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n7http://hub.abes.fr/springer/periodical/11082/1993/volume_25/issue_6/B916A09733AD5B9BE053120B220A19A2/authorship/
rdawhttp://rdaregistry.info/Elements/w/
xsdhhttp://www.w3.org/2001/XMLSchema#
n15http://hub.abes.fr/referentiel/springer/articletypes/
n9http://hub.abes.fr/springer/periodical/11082/1993/volume_25/issue_6/B916A09733AD5B9BE053120B220A19A2/m/
Subject Item
n2:w
rdf:type
rdac:C10001 bibo:Article
dcterms:isPartOf
n5:w
dcterms:title
The effect of interdiffusion on the change of refractive index of an AlGaAs/GaAs quantum well structure
rdaw:P10072
n9:print n9:web
vivo:relatedBy
n7:2 n7:1 n7:3
marcrel:aut
n2:lieh n2:micallefj n2:weissbl
dcterms:abstract
Abstract. The change of the refractive index due to quantum well (QW) disordering is calculated for light propagating normal to the Al0.3Ga0.7As/GaAs QW layers (i.e. along the QW growth direction). A hyperbolic function is used to model the above QW confinement profile after disordering, i.e. thermal interdiffusion of trivalent atoms across the well-barrier interfaces. The refractive index difference (Δn) is evaluated for two cases, where case I refers to the difference between a partially disordered QW and a more extensively disordered QW, while case II refers to the difference between an as-grown QW and a partially disordered QW. The results demonstrate that good photon confinement (large Δn > 0) can be achieved for both cases, where Δn increases with increasing QW width and decreases with annealing time for case I while for case II it increases with annealing time. In comparing the two cases, a shorter annealing time is required to achieve the same value of Δn if the case II structures are used. The change of refractive index obtained here demonstrates a larger value of Δn than that produced by the variation of the concentration of free carriers in the bulk material.
hub:articleType
n13:papers n15:originalpaper
hub:publisher-id
BF00420581
dcterms:dateCopyrighted
1993
dcterms:rightsHolder
n10:chapmanhall
hub:isPartOfThisJournal
n12:w