Abstract
| - We present a theoretical and experimental study of analyte preconcentration via peak mode isotachophoresis (ITP). We perform perturbation analysis of the governing equations that includes electromigration, diffusion, buffer reactions, and nonlinear ionic strength effects. This analysis relaxes the inherent numerical stiffness and achieves a fast solution to the transient sample evolution problem. In this model, we have incorporated a semiempirical relation to capture dispersion phenomenon within ITP interfaces. We also present a simple, closed-form analytical model that identifies key parameters governing the preconcentration dynamics in peak mode ITP. We have validated our models through a detailed experimental study performed in constant current conditions. The relevant governing experiment parameters were varied independently; namely, the leading electrolyte concentration, trailing electrolyte concentration, and current. Through our experimental study, we have identified optimum conditions to achieve high preconcentration ratio and sample accumulation rates. Our approach to the theoretical problem and experimental study provides useful guidelines in optimizing parameters such as detector location, ITP duration, and electrolyte composition in ITP preconcentration and separation assays.
|