Abstract
| - Because of the availability of an abundance of RNA sequence information, the ability to rapidly and accurately predict the secondary structure of RNA from sequence is becoming increasingly important. A common method for predicting RNA secondary structure from sequence is free energy minimization. Therefore, accurate free energy contributions for every RNA secondary structure motif are necessary for accurate secondary structure predictions. Tandem mismatches are prevalent in naturally occurring sequences and are biologically important. A common method for predicting the stability of a sequence asymmetric tandem mismatch relies on the stabilities of the two corresponding sequence symmetric tandem mismatches [Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) J. Mol. Biol. 288, 911-940]. To improve the prediction of sequence asymmetric tandem mismatches, the experimental thermodynamic parameters for the 22 previously unmeasured sequence symmetric tandem mismatches are reported. These new data, however, do not improve prediction of the free energy contributions of sequence asymmetric tandem mismatches. Therefore, a new model, independent of sequence symmetric tandem mismatch free energies, is proposed. This model consists of two penalties to account for destabilizing tandem mismatches, two bonuses to account for stabilizing tandem mismatches, and two penalties to account for A-U and G-U adjacent base pairs. This model improves the prediction of asymmetric tandem mismatch free energy contributions and is likely to improve the prediction of RNA secondary structure from sequence.
|