Abstract
| - A novel method, electrospinning, was explored to prepare europium-doped YBO3 nanocrystalline phosphors. Narrow and size-controllable YBO3 nanotubes and nanowires were obtained, varying from 40 to 500 nm. The average wall thickness of the nanotubes was only 5−10 nm. The structural properties were characterized by X-ray diffraction (XRD), Fourier-transform infrared absorption (FTIR), electron spin resonance (ESR), field emission scanning electron micrographs (FE-SEM), and high-resolution transmission electron micrographs (HR-TEM). The results indicate that theYBO3 nanotubes and nanowires were hexangular in phase and single crystals or polycrystalline in structure. Some surface dangling bonds caused by transition metal ions lead to a change of the coordination number of boron from +3 to +4. The photoluminescent properties of the YBO3: Eu3+ nanowires and nanotubes were also characterized. It was observed that the charge-transfer excitation bands of Eu3+ in the nanowires and nanotubes blue-shifted in contrast to those in bulk, because of the variation of coordination environments.
- Narrow and size-controllable YBO3:Eu3+ nanotubes and nanowires were prepared by electrospinning for the first time. Their diameters vary from 40 to 500 nm. The average wall thickness of the nanotubes was only 5-10 nm. The structure and photoluminescence properties of them was characterized.
|