Documentation scienceplus.abes.fr version Bêta

À propos de : Coprecipitation of Arsenate with Metal Oxides. 2. Nature, Mineralogy, and Reactivity of Iron(III) Precipitates        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Coprecipitation of Arsenate with Metal Oxides. 2. Nature, Mineralogy, and Reactivity of Iron(III) Precipitates
has manifestation of work
related by
Author
Abstract
  • Arsenate coprecipitated with iron affects the surface properties, the mineralogy, and the reactivity of the samples toward phosphate. Arsenate was partially removed (< 20%) by phosphate.
  • Coprecipitation of arsenic with iron or aluminum occurs in natural environments and is a remediation technology used to remove this toxic metalloid from drinking water and hydrometallurgical solutions. In this work, we studied the nature, mineralogy, and reactivity toward phosphate of iron-arsenate coprecipitates formed at As(V)/Fe(III) molar ratios (R) of 0, 0.01, or 0.1 and at pH 4.0, 7.0, and 10.0 aged for 30 or 210 days at 50 °C and studied the desorption of arsenate. At R = 0, goethite and hematite (with ferrihydrite at pH 4.0 and 7.0) crystallized, whereas at R = 0.01, the formation of ferrihydrite increased and hematite crystallization was favored over goethite. In some samples, the morphology of hematite changed from rounded platy crystals to ellipsoids. At R = 0.1, ferrihydrite formed in all the coprecipitates and remained unchanged even after 210 days of aging. The surface area and chemical composition of the precipitates were affected by pH, R, and aging. Chemical dissolution of the samples showed that arsenate was present mainly in ferrihydrite, but at R = 0.01, it was partially incorporated into the structures of crystalline Fe oxides. The sorption of phosphate onto the coprecipitates was affected not only by the mineralogy and surface area of the samples but also by the amounts of arsenate present in the oxides. The samples formed at pH 4.0 and 7.0 and at R = 0.1 sorbed lower amounts of phosphate than the precipitates obtained at R = 0 or 0.01, despite the former having a larger surface area and showing only a presence of short-range ordered materials. This is mainly due to the fact that in the coprecipitates at R = 0.1 arsenate occupied many sorption sites, thus preventing phosphate sorption. Less than 20% of the arsenate present in the coprecipitates formed at R = 0.1 was removed by phosphate and more from the samples synthesized at pH 7.0 or 10.0 than at pH 4.0. Moreover, we found that more arsenate was desorbed by phosphate from a ferrihydrite on which arsenate was added than from an iron-arsenate coprecipitate, attributed to the partial occlusion of some arsenate anions into the framework of the coprecipitate. XPS analyses confirmed these findings.
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata