Abstract
| - The atmospheric outflow of PAHs from Guangdong was estimated using a potential receptor influence function model, and transport to the southwest and northeast was strongly influenced by East Asian monsoons.
- The atmospheric outflow of polycyclic aromatic hydrocarbons (PAHs) from Guangdong, China, a region of high PAH emission, was modeled using a potential receptor influence function (PRIF) probabilistic model which was based on a spatially resolved PAH inventory and air mass forward-trajectory calculations. Photochemical degradation and deposition (dry and wet) of PAHs during atmospheric transport were taken into consideration. On average, 48% of the PAHs (by mass) remained in the atmosphere for a transport period of 5 days, staying within the boundary of the source region. The medium molecular weight PAHs (four rings) were predicted to travel longer distances in the atmosphere than the low (three rings) or high molecular weight PAHs (five rings) because they are less photodegradable than the lower molecular weight, gas-phase PAHs and less likely to undergo wet and dry depositions than the higher molecular weight, particulate phase PAHs. Under the strong influence of the East Asian monsoons in winter, the predominant outflow pattern of PAHs from Guangdong was to the South China Sea and Southeast Asian countries. In summer, PAHs were transported primarily to northern mainland China. Under particular weather conditions in winter, the PAH-containing air masses were lifted by cold fronts or convection and transported toward the Pacific Ocean by westerly winds. In addition to the distinct seasonality in PAH dispersion and outflow, interannual long-term variation in the outflow is likely influenced by El Niño and southern oscillation.
|