Documentation scienceplus.abes.fr version Bêta

À propos de : Thermally Induced Magnetic Anomalies in Solvates of the Bis(hexafluoroacetylacetonate)copper(II) Complex with Pyrazolyl-Substituted Nitronyl Nitroxide        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Thermally Induced Magnetic Anomalies in Solvates of the Bis(hexafluoroacetylacetonate)copper(II) Complex with Pyrazolyl-Substituted Nitronyl Nitroxide
has manifestation of work
related by
Author
Abstract
  • The main feature inherent in the nature of the Cu(hfac)2L·0.5Solv “breathing crystals” is their incredible mechanical stability and their ability to undergo thermally induced reversible structural rearrangements accompanied by various magnetic anomalies. Doping the crystals with definite solvent molecules using at first the “rough structural step” and then the “gentle structural step” is an efficient method of control over the temperature of the magnetic anomaly.
  • We succeeded in synthesizing of a whole family of isostructural solvates of the copper(II) hexafluoroacetylacetonate complex with pyrazolyl-substituted nitronyl nitroxide (L): Cu(hfac)2L·0.5Solv. The main feature inherent in nature of Cu(hfac)2L·0.5Solv single crystals is their incredible mechanical stability and ability to undergo reversible structural rearrangements with temperature variation, accompanied by anomalies on the μeff(T) dependence. Structural investigation of the complexes over a wide temperature range before and after the structural transition and the ensuing magnetic phase transition showed that the spatial peculiarities of the solvent molecules incorporated into the solid govern the character of the μeff(T) dependence and the temperature region of the magnetic anomaly. Thus, doping of crystals with definite solvent molecules could be used as an efficient method of control over the magnetic anomaly temperature (Ta). The investigation of this special series of crystals has revealed the relationship between the chemical step and the magnetic properties. It was shown that “mild” modification of Ta for Cu(hfac)2L·0.5Solv required a much smaller structural step than the typical change of one −CH2− fragment in a homologous series in organic chemistry. Quantum-chemical calculations with the use of X-ray diffraction data allowed us to trace the character of changes in the exchange interaction parameters in the range of the phase transition. In the temperature range of the phase transition, the exchange parameter changes substantially. The gradual decrease in the magnetic moment, observed in most experiments during sample cooling to Ta, is the result of the gradual increase in the fraction of the low-temperature phase in the high-temperature phase.
Alternative Title
  • Magnetic Anomalies in Cu(II) Complexes
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata