Abstract
| - Detection of chelatable zinc (Zn2+) in biological studies has attracted much attention recently,because chelatable Zn2+ plays important roles in many biological systems. Lanthanide complexes (Eu3+,Tb3+, etc.) have excellent spectroscopic properties for biological applications, such as long luminescencelifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high water solubility. Herein,we present the design and synthesis of a novel lanthanide sensor molecule, [Eu-7], for detecting Zn2+.This europium (Eu3+) complex employs a quinolyl ligand as both a chromophore and an acceptor for Zn2+.Upon addition of Zn2+ to a solution of [Eu-7], the luminescence of Eu3+ is strongly enhanced, with highselectivity for Zn2+ over other biologically relevant metal cations. One of the important advantages of[Eu-7] is that this complex can be excited with longer excitation wavelengths (around 340 nm) as comparedwith previously reported Zn2+-sensitive luminescent lamthanide sensors, whose excitation wavelength isat too high an energy level for biological applications. The usefulness of [Eu-7] for monitoring Zn2+ changesin living HeLa cells was confirmed. This novel Zn2+-selective luminescent lanthanide chemosensor [Eu-7]should be an excellent lead compound for the development of a range of novel luminescent lanthanidechemosensors for biological applications.
|