Documentation scienceplus.abes.fr version Bêta

À propos de : Controlled Silicon Surface Functionalization by Alkene Hydrosilylation        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Controlled Silicon Surface Functionalization by Alkene Hydrosilylation
has manifestation of work
related by
Author
Abstract
  • Immobilization of indene ligands onto two types of hydrogen-terminated surfaces, oxide-free Si [H/Si(111)] and oxidized Si [H/SiO2/Si], has been investigated by infrared absorption spectroscopy. The activity of a common catalyst (H2PtCl6) is shown to depend critically on the nature of the solvent. For instance, 2-propanol preferentially reacts with the surface, preventing any ligand attachment. Chlorobenzene is more stable, allowing some ligand attachment, but the H2PtCl6 catalyst also fosters silicon oxidation. In contrast, UV irradiation on oxide-free surfaces promotes a cleaner and more efficient reaction, leading to ligand attachment without substrate oxidation. The complete inactivity of H-terminated surfaces with a thin oxide layer [H/SiO2/Si] suggests that the UV-induced immobilization is mediated solely by the excitation of electron−hole pairs (excitons) in the substrate and is not the result of direct Si−H bond breaking.
article type
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata