Abstract
| - Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited-state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid (DHICA), its acetylated, methylated, and carboxylic ester derivatives, and two oligomers, a dimer and a trimer in the O-acetylated forms. The results show that (1) excited-state decays are faster for the trimer relative to the monomer; (2) for parent DHICA, excited-state lifetimes are much shorter in aqueous acidic medium (380 ps) as compared to organic solvent (acetonitrile, 2.6 ns); and (3) variation of fluorescence spectra and excited-state dynamics can be understood as a result of excited-state intramolecular proton transfer (ESIPT). The dependence on the DHICA oligomer size of the excited-state deactivation and its ESIPT mechanism provides important insight into the photostability and the photoprotective function of eumelanin. Mechanistic analogies with the corresponding processes in DNA and other biomolecules are recognized.
|