Documentation scienceplus.abes.fr version Bêta
AttributsValeurs
type
Is Part Of
Subject
Title
  • Bisphosphonate Derivatives of Nucleoside Antimetabolites: Hydrolytic Stability and Hydroxyapatite Adsorption of 5′-β,γ-Methylene and 5′-β,γ-(1-Hydroxyethylidene) Triphosphates of 5-Fluorouridine and ara-Cytidine
has manifestation of work
related by
Author
Abstract
  • Kinetics of the hydrolytic reactions of four bisphosphonate derivatives of nucleoside antimetabolites, viz., 5-fluorouridine 5′-β,γ-(1-hydroxyethylidene) triphosphate (4), 5-fluorouridine 5′-β,γ-methylene triphosphate (5), ara-cytidine 5′-β,γ-(1-hydroxyethylidene) triphosphate (6), and ara-cytidine 5′-β,γ-methylene triphosphate (7), have been studied over a wide pH range (pH 1.0−8.5) at 90 °C. With each compound, the disappearance of the starting material was accompanied by formation of the corresponding nucleoside 5′-monophosphate, the reaction being up to 2 orders of magnitude faster with the β,γ-(1-hydroxyethylidene) derivatives (4, 6) than with their β,γ-methylene counterparts (5, 7). With compound 7, deamination of the cytosine base competed with the phosphate hydrolysis at pH 3−6. The measurements at 37 °C (pH 7.4) in the absence and presence of divalent alkaline earth metal ions (Mg2+ and Ca2+) showed no sign of metal ion catalysis. Under these conditions, the initial product, nucleoside 5′-monophosphate, underwent rapid dephosphorylation to the corresponding nucleoside. Hydrolysis of the β,γ-methylene derivatives (5, 7) to the corresponding nucleoside 5′-monophosphates was markedly faster in mouse serum than in aqueous buffer (pH 7.4), the rate-acceleration being 5600- and 3150-fold with 5 and 7, respectively. In human serum, the accelerations were 800- and 450-fold compared to buffer. In striking contrast, the β,γ-(1-hydroxyethylidene) derivatives did not experience a similar decrease in hydrolytic stability. The stability in human serum was comparable to that in aqueous buffer (τ1/2 = 17 and 33 h with 4 and 6, respectively), and on going to mouse serum, a 2- to 4-fold acceleration was observed. To elucidate the mineral-binding properties of 4−7, their retention on a hydroxyapatite column was studied and compared to that of zoledronate (1a) and nucleoside mono-, di-, and triphosphates.
Alternative Title
  • Bisphosphonate Derivatives of Nucleoside Antimetabolites
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata