Documentation scienceplus.abes.fr version Bêta

À propos de : Cis−Trans Photoisomerization of Fluorescent-Protein Chromophores        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Cis−Trans Photoisomerization of Fluorescent-Protein Chromophores
has manifestation of work
related by
Author
Abstract
  • Photochromic variants of fluorescent proteins are opening the way to a number of opportunities for high-sensitivity regioselective studies in the cellular environment and may even lead to applications in information and communication technology. Yet, the detailed photophysical processes at the basis of photoswitching have not been fully clarified. In this paper, we used synthetic FP chromophores to clarify the photophysical processes associated with the photochromic behavior. In particular, we investigated the spectral modification of synthetic chromophore analogues of wild-type green fluorescent protein (GFP), Y66F GFP (BFPF), and Y66W GFP (CFP) upon irradiation in solutions of different polarities. We found that the cis−trans photoisomerization mechanism can be induced in all the chromophores. The structural assignments were carried out both by NMR measurements and DFT calculations. Remarkably, we determined for the first time the spectra of neutral trans isomers in different solvents. Finally, we calculated the photoconversion quantum yields by absorption measurements under continuous illumination at different times and by a nanosecond laser-flash photolysis method. Our results indicate that cis−trans photoisomerization is a general mechanism of FP chromophores whose efficiency is modulated by the detailed mutant-specific protein environment.
Alternative Title
  • Fluorescent-Protein Chromophores
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata