Documentation scienceplus.abes.fr version Bêta

À propos de : Accretion powered spherical wind in general relativity        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Accretion powered spherical wind in general relativity
Date
has manifestation of work
related by
Author
Abstract
  • Using full general relativistic calculations, we investigate the possibility of generation of mass outflow from spherical accretion onto non-rotating black holes. Introducing a relativistic hadronic-pressure-supported steady, standing, spherically-symmetric shock surface around a Schwarzschild black hole as the effective physical barrier that may be responsible for the generation of spherical wind, we calculate the mass outflow rate R\dot m in terms of three accretion parameters and one outflow parameter by simultaneously solving the set of general relativistic hydrodynamic equations describing spherically symmetric, transonic, polytropic accretion and wind around a Schwarzschild black hole. Not only do we provide a sufficiently plausible estimation of R\dot m, we also successfully study the dependence and variation of this rate on various physical parameters governing the flow. Our calculation indicates that independent of initial boundary conditions, the baryonic matter content of this shock-generated wind always correlates with post-shock flow temperature.
article type
publisher identifier
  • aa1453
Date Copyrighted
Rights
  • © ESO, 2001
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata