Documentation scienceplus.abes.fr version Bêta

À propos de : Electromagnetic pulse from final gravitational stellar collapse        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Electromagnetic pulse from final gravitational stellar collapse
Date
has manifestation of work
related by
Author
Abstract
  • We employ an effective gravitational stellar final collapse model which contains the relevant physics involved in this complex phenomena: spherical radical infall in the Schwarzschild metric of the homogeneous core of an advanced star, giant magnetic dipole moment, magnetohydrodynamic material response and realistic equations of state (EOS). The electromagnetic pulse is computed both for medium size cores undergoing hydrodynamic bounce and large size cores undergoing black hole formation. We clearly show that there must exist two classes of neutron stars, separated by maximum allowable masses: those that collapsed as solitary stars (dynamical mass limit) and those that collapsed in binary systems allowing mass accretion (static neutron star mass). Our results show that the electromagnetic pulse spectrum associated with black hole formation is a universal signature, independent of the nuclear EOS. Our results also predict that there must exist black holes whose masses are less than the static neutron star stability limit.
article type
publisher identifier
  • aa1471
Date Copyrighted
Rights
  • © ESO, 2002
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata