Abstract
| - In this paper we present a Raman study of pure CH 4, H 2O:CH 4:N 2 and CH 3OH:N 2 frozen films before and after ion irradiation at 12 K, 100 K and 300 K. By means of Raman spectroscopy, we monitor the structural evolution of each film, whose chemical and physical properties are deeply modified by the interaction with the ion beam. For the two methane containing samples, Raman spectra show that the initial ice is partially converted into a refractory residue, which under further irradiation evolves towards an amorphous carbon (AC) with a band near 1560 cm -1 (G line) and a shoulder at about 1360 cm -1 (D line). No evidence of the AC Raman band is seen in the spectra of the methanol-containing mixture. By means of Lorentzian fits, we have determined the specific parameters of the AC band (G and D line peak positions, widths and relative intensities) in our spectra after ion irradiation and we have compared them with the corresponding parameters of the band as observed in the spectra of 11 IDPs (Interplanetary Dust Particles). Here we present the experimental results and discuss their contribution to our knowledge of the origin and evolution of IDPs.
|