Aims. We investigate the optical/near-infrared light curve of the afterglow of GRB 080710 in the context of rising afterglows. Methods. Optical and near-infrared photometry was performed using the seven-channel imager GROND and the Tautenburg Schmidt telescope. X-ray data were provided by the X-ray Telescope onboard the Swift satellite. We construct an empirical light curve model using the available broadband data, which is well-sampled in the time and frequency domains. Results. The optical/NIR light curve of the afterglow of GRB 080710 is dominated by an initial increase in brightness, which smoothly turns over into a shallow power law decay. At around 10 ks post-burst, there is an achromatic break from shallow to steeper decline in the afterglow light curve with a change in the power law index of $\Delta\alpha\sim 0.9$. Conclusions. The initially rising achromatic light curve of the afterglow of GRB 080710 can be accounted for with a model of a burst viewed off-axis or a single jet in its pre-deceleration phase and in an on-axis geometry. A unified picture of the afterglow light curve and prompt emission properties can be obtained with an off-axis geometry, suggesting that late and shallow rising optical light curves of GRB afterglows might be produced by geometric effects.