Documentation scienceplus.abes.fr version Bêta

À propos de : Relativistic beaming and gamma-ray brightness of blazars        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Relativistic beaming and gamma-ray brightness of blazars
Date
has manifestation of work
related by
Author
Abstract
  • Aims. We investigate the dependence of γ-ray brightness of blazars on intrinsic properties of their parsec-scale radio jets and the implication for relativistic beaming. Methods. By combining apparent jet speeds derived from high-resolution VLBA images from the MOJAVE program with millimetre-wavelength flux density monitoring data from Metsähovi Radio Observatory, we estimate the jet Doppler factors, Lorentz factors, and viewing angles for a sample of 62 blazars. We study the trends in these quantities between the sources which were detected in γ-rays by the Fermi Large Area Telescope (LAT) during its first three months of science operations and those which were not detected. Results. The LAT-detected blazars have on average higher Doppler factors than non-LAT-detected blazars, as has been implied indirectly in several earlier studies. We find statistically significant differences in the viewing angle distributions between γ-ray bright and weak sources. Most interestingly, γ-ray bright blazars have a distribution of comoving frame viewing angles that is significantly narrower than that of γ-ray weak blazars and centred roughly perpendicular to the jet axis. The lack of γ-ray bright blazars at large comoving frame viewing angles can be explained by relativistic beaming of γ-rays, while the apparent lack of γ-ray bright blazars at small comoving frame viewing angles, if confirmed with larger samples, may suggest an intrinsic anisotropy or Lorentz factor dependence of the γ-ray emission.
article type
publisher identifier
  • aa13740-09
Date Copyrighted
Rights
  • © ESO, 2010
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata