Abstract
| - Aims. Radio galaxies with a projected linear size $\ga$1 Mpc are classified as giant radio sources. According to the current interpretation these are old sources which have evolved in a low-density ambient medium. Because radiative losses are negligible at low frequency, extending spectral aging studies in this frequency range will allow us to determine the zero-age electron spectrum injected and then to improve the estimate of the synchrotron age of the source. Methods. We present Very Large Array images at 74 MHz and 327 MHz of two giant radio sources: 3C 35 and 3C 223. We performed a spectral study using 74, 327, 608 and 1400 GHz images. The spectral shape is estimated in different positions along the source. Results. The radio spectrum follows a power-law in the hotspots, while in the inner region of the lobe the shape of the spectrum shows a curvature at high frequencies. This steepening agrees with synchrotron aging of the emitting relativistic electrons. In order to estimate the synchrotron age of the sources, the spectra were fitted with a synchrotron model of emission. They show that 3C 35 is an old source of 143 ± 20 Myr, while 3C 223 is a younger source of 72 ± 4 Myr.
|