Documentation scienceplus.abes.fr version Bêta

À propos de : Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations
Date
has manifestation of work
related by
Author
Abstract
  • Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.
article type
publisher identifier
  • aa14104-10
Date Copyrighted
Rights
  • © ESO, 2010
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata