Documentation scienceplus.abes.fr version Bêta

À propos de : Fe K emission from active galaxies in the COSMOS field        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Fe K emission from active galaxies in the COSMOS field
Date
has manifestation of work
related by
Author
Abstract
  • We present a rest-frame spectral stacking analysis of  ~1000 X-ray sources detected in the XMM-COSMOS field to investigate the iron-K line properties of active galaxies beyond redshift z ~ 1. In Type I AGN that have a typical X-ray luminosity of LX ~ 1.5 × 10 44 (erg s -1) and z ~ 1.6 the cold Fe K at 6.4 keV is weak ( EW ~ 0.05 keV), which agrees with the known trend. In contrast, high-ionization lines of Fe xxv and Fe xxvi are pronounced. These high-ionization Fe K lines appear to have a connection with high accretion rates. While no broad Fe emission is detected in the total spectrum, it might be present, albeit at low significance (~2 σ), when the X-ray luminosity is restricted to the range below 3 × 10 44 erg s -1, or when an intermediate range of Eddington ratio around λ ~ 0.1 is selected. In Type II AGN, both cold and high-ionzation lines become weak with increasing X-ray luminosity. However, we detected strong high-ionization Fe K ( EW ~ 0.3 keV) in the spectrum of objects at z > 2, while we found no 6.4 keV line. We also found that the primary source of the high-ionization Fe K emission are those objects detected with Spitzer-MIPS at 24  μm. Given their median redshift of z ≃ 2.5, their bolometric luminosity is likely to reach 10 13    L⊙ and the MIPS-detected emission most likely originates from hot dust heated by embedded AGN, probably accreting at high Eddington ratio. These properties match those of rapidly growing black holes in ultra-luminous infrared galaxies at the interesting epoch ( z ~ 2-3) of galaxy formation.
article type
publisher identifier
  • aa18203-11
Date Copyrighted
Rights
  • © ESO, 2012
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata