Documentation scienceplus.abes.fr version Bêta

À propos de : A study of deuterated water in the low-mass protostar IRAS 16293-2422        

AttributsValeurs
type
Is Part Of
Subject
Title
  • A study of deuterated water in the low-mass protostar IRAS 16293-2422
Date
has manifestation of work
related by
Author
Abstract
  • Context. Water is a primordial species in the emergence of life, and comets may have brought a large fraction to Earth to form the oceans. To understand the evolution of water from the first stages of star formation to the formation of planets and comets, the HDO/H 2O ratio is a powerful diagnostic. Aims. Our aim is to determine precisely the abundance distribution of HDO towards the low-mass protostar IRAS 16293-2422 and learn more about the water formation mechanisms by determining the HDO/H 2O abundance ratio. Methods. A spectral survey of the source IRAS 16293-2422 was carried out in the framework of the CHESS (Chemical Herschel Surveys of Star forming regions) Herschel key program with the HIFI (Heterodyne Instrument for the Far-Infrared) instrument, allowing detection of numerous HDO lines. Other transitions have been observed previously with ground-based telescopes. The spherical Monte Carlo radiative transfer code RATRAN was used to reproduce the observed line profiles of HDO by assuming an abundance jump. To determine the H 2O abundance throughout the envelope, a similar study was made of the H 218O observed lines, as the H 2O main isotope lines are contaminated by the outflows. Results. It is the first time that so many HDO and H 218O transitions have been detected towards the same source with high spectral resolution. We derive an inner HDO abundance ( T ≥ 100 K) of about 1.7 × 10 -7 and an outer HDO abundance ( T < 100 K) of about 8 × 10 -11. To reproduce the HDO absorption lines observed at 894 and 465 GHz, it is necessary to add an absorbing layer in front of the envelope. It may correspond to a water-rich layer created by the photodesorption of the ices at the edges of the molecular cloud. At a 3 σ uncertainty, the HDO/H 2O ratio is 1.4-5.8% in the hot corino, whereas it is 0.2-2.2% in the outer envelope. It is estimated at  ~4.8% in the added absorbing layer. Conclusions. Although it is clearly higher than the cosmic D/H abundance, the HDO/H 2O ratio remains lower than the D/H ratio derived for other deuterated molecules observed in the same source. The similarity of the ratios derived in the hot corino and in the added absorbing layer suggests that water formed before the gravitational collapse of the protostar, contrary to formaldehyde and methanol, which formed later once the CO molecules had depleted on the grains.
article type
publisher identifier
  • aa17627-11
Date Copyrighted
Rights
  • © ESO, 2012
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata