Documentation scienceplus.abes.fr version Bêta

À propos de : Eccentricity of radiative disks in close binary-star systems        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Eccentricity of radiative disks in close binary-star systems
Date
has manifestation of work
related by
Author
Abstract
  • Context. Disks in binaries have a complex behavior because of the perturbations of the companion star. Planetesimal growth and planet formation in binary-star systems both depend on the companion star parameters and the properties of the circumstellar disk. An eccentric disk may significantly increase the impact velocity of planetesimals and therefore jeopardize the accumulation process. Aims. We model the evolution of disks in close binaries including the effects of self-gravity and adopting different prescriptions to model the disk radiative properties. We focus on the dynamical properties and evolutionary tracks of the disks. Methods. We use the hydrodynamical code FARGO and include in its energy equation both heating and cooling effects. Results. Radiative disks have a lower disk eccentricity than locally isothermal disks with the same temperature profile. Their average eccentricity is about 0.05, and is almost independent of the eccentricity of the binary orbit, in contrast to locally isothermal disk models. As a consequence, we do not observe the formation of an internal elliptical low density region as in locally isothermal disk models. However, the disk eccentricity depends on the disk mass in terms of the opacities. Akin to locally isothermal disk models, self-gravity forces the disk’s longitude of pericenter to librate about a fixed orientation with respect to the binary apsidal line ( π). Conclusions. The disk radiative properties play an important role in the evolution of disks in binaries. A radiative disk has an overall shape and internal structure that differ significantly from those of a locally isothermal disk with a similar temperature profile. This is an important finding for both describing the evolutionary track of the disk during its progressive mass loss, and for planet formation because the internal structure of the disk is relevant to planetesimal growth in binary systems. The non-symmetrical distribution of mass in these disks causes high eccentricities for planetesimals, whose growth may be affected.
article type
publisher identifier
  • aa18075-11
Date Copyrighted
Rights
  • © ESO, 2012
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata