Documentation scienceplus.abes.fr version Bêta

À propos de : Approximations for radiative cooling and heating in the solar chromosphere        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Approximations for radiative cooling and heating in the solar chromosphere
Date
has manifestation of work
related by
Author
Abstract
  • Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. We look for simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.
article type
publisher identifier
  • aa18366-11
Date Copyrighted
Rights
  • © ESO, 2012
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata