Documentation scienceplus.abes.fr version Bêta

À propos de : Isotropic inelastic and superelastic collisional rates in a multiterm atom        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Isotropic inelastic and superelastic collisional rates in a multiterm atom
Date
has manifestation of work
related by
Author
Abstract
  • The spectral line polarization of the radiation emerging from a magnetized astrophysical plasma depends on the state of the atoms within the medium, whose determination requires considering the interactions between the atoms and the magnetic field, between the atoms and photons (radiative transitions), and between the atoms and other material particles (collisional transitions). In applications within the framework of the multiterm model atom (which accounts for quantum interference between magnetic sublevels pertaining either to the same J-level or to different J-levels within the same term) collisional processes are generally neglected when solving the master equation for the atomic density matrix. This is partly due to the lack of experimental data and/or of approximate theoretical expressions for calculating the collisional transfer and relaxation rates (in particular the rates for interference between sublevels pertaining to different J-levels, and the depolarizing rates due to elastic collisions). In this paper we formally define and investigate the transfer and relaxation rates due to isotropic inelastic and superelastic collisions that enter the statistical equilibrium equations for the atomic density matrix of a multiterm atom. Under the hypothesis that the interaction between the collider and the atom can be described by a dipolar operator, we provide expressions that relate the collisional rates for interference between different J-levels to the usual collisional rates for J-level populations, for which experimental data or approximate theoretical expressions are generally available. We show that the rates for populations and interference within the same J-level reduce to those previously obtained for the multilevel model atom (where quantum interference is assumed to be present only between magnetic sublevels pertaining to any given J-level). Finally, we apply the general equations to the case of a two-term atom with unpolarized lower term, illustrating the impact of inelastic and superelastic collisions on the scattering line polarization through radiative transfer calculations in a slab of stellar atmospheric plasma anisotropically illuminated by the photospheric radiation field.
article type
publisher identifier
  • aa20511-12
Date Copyrighted
Rights
  • © ESO, 2013
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata