Attributs | Valeurs |
---|
type
| |
Is Part Of
| |
Subject
| |
Title
| - The origin of organic emission in NGC 2071
|
Date
| |
has manifestation of work
| |
related by
| |
Author
| |
Abstract
| - Context. The physical origin behind organic emission lines in embedded low-mass star formation has been fiercely debated over the last two decades. A multitude of scenarios have been proposed, from a hot corino to PDRs on cavity walls to shock excitation. Aims. The aim of this paper is to determine the location and the corresponding physical conditions of the gas responsible for organics emission lines. The outflows around the small protocluster NGC 2071 are an ideal testbed that can be used to differentiate between various scenarios. Methods. Using Herschel-HIFI and the Submillimeter Array, observations of CH 3OH, H 2CO, and CH 3CN emission lines over a wide range of excitation energies were obtained. Comparisons to a grid of radiative transfer models provide constraints on the physical conditions. Comparison to H 2O line shape is able to trace gas-phase synthesis versus a sputtered origin. Results. Emission of organics originates in three separate spots: the continuum sources IRS 1 (“B”) and IRS 3 (“A”) and a new outflow position (“F”). Densities are above 10 7 cm -3 and temperatures between 100 K and 200 K. CH 3OH emission observed with HIFI originates in all three regions and cannot be associated with a single region. Very little organic emission originates outside of these regions. Conclusions. Although the three regions are small ( <1500 AU), gas-phase organics likely originate from sputtering of ices as a result of outflow activity. The derived high densities ( >10 7 cm -3) are likely a requirement for organic molecules to survive from being immediately destroyed by shock products after evaporation. The lack of spatially extended emission confirms that organic molecules cannot (re-)form through gas-phase synthesis, as opposed to H 2O, which shows strong line wing emission. The lack of CH 3CN emission at “F” is evidence for a different history of ice processing because of the absence of a protostar at that location and recent ice mantle evaporation.
|
article type
| |
publisher identifier
| |
Date Copyrighted
| |
Rights
| |
Rights Holder
| |
is part of this journal
| |
is primary topic
of | |