Documentation scienceplus.abes.fr version Bêta

À propos de : Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations
Date
has manifestation of work
related by
Author
Abstract
  • Aims. We study the dependence of protoplanetary disk evolution on stellar mass using a large sample of young stellar objects in nearby young star-forming regions. Methods. We update the protoplanetary disk fractions presented in our recent work (Paper I of this series) derived for 22 nearby ( <500 pc) associations between 1 and 100 Myr. We use a subsample of 1428 spectroscopically confirmed members to study the impact of stellar mass on protoplanetary disk evolution. We divide this sample into two stellar mass bins (2 M⊙ boundary) and two age bins (3 Myr boundary), and use infrared excesses over the photospheric emission to classify objects in three groups: protoplanetary disks, evolved disks, and diskless. The homogeneous analysis and bias corrections allow for a statistically significant inter-comparison of the obtained results. Results. We find robust statistical evidence of disk evolution dependence with stellar mass. Our results, combined with previous studies on disk evolution, confirm that protoplanetary disks evolve faster and/or earlier around high-mass ( >2 M⊙) stars. We also find a roughly constant level of evolved disks throughout the whole age and stellar mass spectra. Conclusions. We conclude that protoplanetary disk evolution depends on stellar mass. Such a dependence could have important implications for gas giant planet formation and migration, and could contribute to explaining the apparent paucity of hot Jupiters around high-mass stars.
article type
publisher identifier
  • aa24846-14
Date Copyrighted
Rights
  • © ESO, 2015
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata