Documentation scienceplus.abes.fr version Bêta

À propos de : Cosmic rays in astrospheres        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Cosmic rays in astrospheres
Date
has manifestation of work
related by
Author
Abstract
  • Context. Cosmic rays passing through large astrospheres can be efficiently cooled inside these “cavities” in the interstellar medium. Moreover, the energy spectra of these energetic particles are already modulated in front of the astrospherical bow shocks. Aims. We study the cosmic ray flux in and around λ Cephei as an example for an astrosphere. The large-scale plasma flow is modeled hydrodynamically with radiative cooling. Methods. We study the cosmic ray flux in a stellar wind cavity using a transport model based on stochastic differential equations. The required parameters, most importantly, the elements of the diffusion tensor, are based on the heliospheric parameters. The magnetic field required for the diffusion coefficients is calculated kinematically. We discuss the transport in an astrospheric scenario with varying parameters for the transport coefficients. Results. We show that large stellar wind cavities can act as sinks for the Galactic cosmic ray flux and thus can give rise to small-scale anisotropies in the direction to the observer. Conclusions. Small-scale cosmic ray anisotropies can naturally be explained by the modulation of cosmic ray spectra in huge stellar wind cavities.
article type
publisher identifier
  • aa25091-14
Date Copyrighted
Rights
  • © ESO, 2015
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata