Documentation scienceplus.abes.fr version Bêta

À propos de : Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO
Date
has manifestation of work
related by
Author
Abstract
  • Context. It is generally agreed that hydrogenation reactions dominate chemistry on grain surfaces in cold, dense molecular cores, saturating the molecules present in ice mantles. Aims. We present a study of the low temperature reactivity of solid phase isocyanic acid (HNCO) with hydrogen atoms, with the aim of elucidating its reaction network. Methods. Fourier transform infrared spectroscopy and mass spectrometry were employed to follow the evolution of pure HNCO ice during bombardment with H atoms. Both multilayer and monolayer regimes were investigated. Results. The hydrogenation of HNCO does not produce detectable amounts of formamide (NH 2CHO) as the major product. Experiments using deuterium reveal that deuteration of solid HNCO occurs rapidly, probably via cyclic reaction paths regenerating HNCO. Chemical desorption during these reaction cycles leads to loss of HNCO from the surface. Conclusions. It is unlikely that significant quantities of NH 2CHO form from HNCO. In dense regions, however, deuteration of HNCO will occur. HNCO and DNCO will be introduced into the gas phase, even at low temperatures, as a result of chemical desorption.
article type
publisher identifier
  • aa25403-14
Date Copyrighted
Rights
  • © ESO, 2015
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata