Documentation scienceplus.abes.fr version Bêta

À propos de : How to form planetesimals from mm-sized chondrules and chondrule aggregates        

AttributsValeurs
type
Is Part Of
Subject
Title
  • How to form planetesimals from mm-sized chondrules and chondrule aggregates
Date
has manifestation of work
related by
Author
Abstract
  • The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100 −1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~10 5 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale ( ~10 6−10 7 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further.
article type
publisher identifier
  • aa25120-14
Date Copyrighted
Rights
  • © ESO, 2015
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata