Documentation scienceplus.abes.fr version Bêta

À propos de : Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS
Date
has manifestation of work
related by
Author
Abstract
  • Context. In high-resolution X-ray observations of the hot plasma in clusters of galaxies, significant structures caused by AGN feedback, mergers, and turbulence can be detected. Many clusters have been observed by Chandra in great depth and at high resolution. Aims. With the use of archival data taken with the Chandra ACIS instrument, the aim was to study thermodynamic perturbations of the X-ray emitting plasma and to apply this to better understand the thermodynamic and dynamic state of the intracluster medium (ICM). Methods. We analysed deep observations for a sample of 33 clusters with more than 100 ks of Chandra exposure each at distances between redshift 0.025 and 0.45. The combined exposure of the sample is 8 Ms. Fitting emission models to different regions of the extended X-ray emission, we searched for perturbations in density, temperature, pressure, and entropy of the hot plasma. Results. For individual clusters, we mapped the thermodynamic properties of the ICM and measured their spread in circular concentric annuli. Comparing the spread of different gas quantities to high-resolution 3D hydrodynamic simulations, we constrained the average Mach number regime of the sample to Mach 1D ≈ 0.16 ± 0.07 . In addition we found a tight correlation between metallicity, temperature, and redshift with an average metallicity of Z ≈ 0.3 ± 0.1 Z⊙. Conclusions. This study provides detailed perturbation measurements for a large sample of clusters that can be used to study turbulence and make predictions for future X-ray observatories like eROSITA, Astro-H, and Athena.
article type
publisher identifier
  • aa26925-15
Date Copyrighted
Rights
  • © ESO, 2016
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata