Documentation scienceplus.abes.fr version Bêta

À propos de : The hot white dwarf in the peculiar binary nucleus of the planetary nebula EGB 6        

AttributsValeurs
type
Is Part Of
Subject
Title
  • The hot white dwarf in the peculiar binary nucleus of the planetary nebula EGB 6
Date
has manifestation of work
related by
Author
Abstract
  • EGB 6 is an extended, faint old planetary nebula (PN) with an enigmatic nucleus. The central star (PG 0950+139) is a hot DAOZ-type white dwarf (WD). An unresolved, compact emission knot was discovered to be located 0.′′166 away from the WD and it was shown to be centered around a dust-enshrouded low-luminosity star. It was argued that the dust disk and evaporated gas (photoionized by the hot WD) around the companion are remnants of a disk formed by wind material captured from the WD progenitor when it was an asymptotic giant branch (AGB) star. In this paper, we assess the hot WD to determine its atmospheric and stellar parameters. We performed a model-atmosphere analysis of ultraviolet (UV) and optical spectra. We found Teff = 105 000 ± 5000 K, log g = 7.4 ± 0.4, and a solar helium abundance (He = 0.25 ± 0.1, mass fraction). We measured the abundances of ten more species (C, N, O, F, Si, P, S, Ar, Fe, Ni) and found essentially solar abundance values, indicating that radiation-driven wind mass-loss, with a theoretical rate of log( Ṁ/ M⊙/yr) = −11.0 −0.8+1.1, prevents the gravitational separation of elements in the photosphere. The WD has a mass of M/ M⊙ = 0.58 −0.04+0.12 and its post-AGB age (log( tevol/yr = 360 −0.09+1.26)) is compatible with the PN kinematical age of log( tPN/yr = 4.2). In addition, we examined the UV spectrum of the hot nucleus of a similar object with a compact emission region, Tol 26 (PN G298.0+34.8), and found that it is a slightly cooler DAOZ WD ( Teff ≈ 85 000 K), but this WD shows signatures of gravitational settling of heavy elements.
article type
publisher identifier
  • aa33200-18
Date Copyrighted
Rights
  • © ESO 2018
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata