Documentation scienceplus.abes.fr version Bêta

À propos de : Stellar masses, metallicity gradients, and suppressed star formation revealed in a new sample of absorption selected galaxies        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Stellar masses, metallicity gradients, and suppressed star formation revealed in a new sample of absorption selected galaxies
Date
has manifestation of work
related by
Author
Abstract
  • Context. Absorbing galaxies are selected via the detection of characteristic absorption lines which their gas-rich media imprint in the spectra of distant light-beacons. The proximity of the typically faint foreground absorbing galaxies to bright background sources makes it challenging to robustly identify these in emission, and hence to characterise their relation to the general galaxy population. Aims. We search for emission to confirm and characterise ten galaxies hosting damped, metal-rich quasar absorbers at redshift z< 1. Methods. We identified the absorbing galaxies by matching spectroscopic absorption -and emission redshifts and from projected separations. Combining emission-line diagnostics with existing absorption spectroscopy and photometry of quasar-fields hosting metal-rich, damped absorbers, we compare our new detections with reference samples and place them on scaling relations. Results. We spectroscopically confirm seven galaxies harbouring damped absorbers (a 70% success-rate). Our results conform to the emerging picture that neutral gas on scales of tens of kpc in galaxies is what causes the characteristic H  I absorption. Our key results are: (I) Absorbing galaxies with log 10[ M⋆,( M⊙)] ≳ 10 have star formation rates that are lower than predicted for the main sequence of star formation. (II) The distribution of impact parameter with H  I column density and with absorption-metallicity for absorbing galaxies at z ∼ 2-3 extends to z ∼ 0.7 and to lower H  I column densities. (III) A robust mean metallicity gradient of ⟨Γ⟩ = −0.022 ± 0.001 dex kpc −1. (IV) By correcting absorption metallicities for ⟨Γ⟩ and imposing a truncation-radius at 12 kpc, absorbing galaxies fall on top of predicted mass-metallicity relations, with a statistically significant decrease in scatter.
article type
publisher identifier
  • aa32992-18
Date Copyrighted
Rights
  • © ESO 2018
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata