Documentation scienceplus.abes.fr version Bêta

À propos de : Modelling the disc atmosphere of the low mass X-ray binary EXO 0748-676        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Modelling the disc atmosphere of the low mass X-ray binary EXO 0748-676
Date
has manifestation of work
related by
Author
Abstract
  • Low mass X-ray binaries exhibit ionized emission from an extended disc atmosphere that surrounds the accretion disc. However, the atmosphere’s nature and geometry is still unclear. In this work we present a spectral analysis of the extended atmosphere of EXO 0748-676 using high-resolution spectra from archival XMM-Newton observations. We model the spectrum that is obtained during the eclipses. This enables us to model the emission lines that come only from the extended atmosphere of the source, and study its physical structure and properties. The RGS spectrum reveals a series of emission lines consistent with transitions of O VIII, O VII, Ne IX and N VII. We perform both Gaussian line fitting and photoionization modelling. Our results suggest that there are two photoionization gas components that are out of pressure equilibrium with respect to each other. One has an ionization parameter of log ξ ∼ 2.5 and a large opening angle, and one has log ξ ∼ 1.3. The second component possibly covers a smaller fraction of the source. From the density diagnostics of the O VII triplet using photoionization modelling, we detect a rather high density plasma of > 10 13 cm −3 for the lower ionization component. This latter component also displays an inflow velocity. We propose a scenario where the high ionization component constitutes an extended upper atmosphere of the accretion disc. The lower ionization component may instead be a clumpy gas created from the impact of the accretion stream with the disc.
article type
publisher identifier
  • aa34000-18
Date Copyrighted
Rights
  • © ESO 2018
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata