Documentation scienceplus.abes.fr version Bêta

À propos de : XMMSL2 J144605.0+685735: a slow tidal disruption event        

AttributsValeurs
type
Is Part Of
Subject
Title
  • XMMSL2 J144605.0+685735: a slow tidal disruption event
Date
has manifestation of work
related by
Author
Abstract
  • Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near real-time data from XMM-Newton slews, and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was detected from the galaxy XMMSL2 J144605.0+685735 (also known as 2MASX 14460522+6857311), that was 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ∼100 days and then fell by a factor of 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical ( U, B, V) bands were roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of 127 ± 4 Mpc ( z = 0.029 ± 0.001) with a spectrum consisting of a young stellar population of 1-5 Gyr in age, an older population, and a total stellar mass of ∼6 × 10 9  M⊙. The bolometric luminosity peaked at Lbol ∼ 10 43 ergs s −1 with an X-ray spectrum that may be modelled by a power law of Γ ∼ 2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10  μJy, which limits the total energy of a hypothetical off-axis jet to E <  5 × 10 50 ergs. The independent behaviour of the optical, UV, and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disc and the X-rays from Compton upscattering of these disc photons.
article type
publisher identifier
  • aa35650-19
Date Copyrighted
Rights
  • © ESO 2019
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata