Documentation scienceplus.abes.fr version Bêta

À propos de : Fast and accurate approximation of the angle-averaged redistribution function for polarized radiation        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Fast and accurate approximation of the angle-averaged redistribution function for polarized radiation
Date
has manifestation of work
related by
Author
Abstract
  • Context. Modeling spectral line profiles taking frequency redistribution effects into account is a notoriously challenging problem from the computational point of view, especially when polarization phenomena (atomic polarization and polarized radiation) are taken into account. Frequency redistribution effects are conveniently described through the redistribution function formalism, and the angle-averaged approximation is often introduced to simplify the problem. Even in this case, the evaluation of the emission coefficient for polarized radiation remains computationally costly, especially when magnetic fields are present or complex atomic models are considered. Aims. We aim to develop an efficient algorithm to numerically evaluate the angle-averaged redistribution function for polarized radiation. Methods. The proposed approach is based on a low-rank approximation via trivariate polynomials whose univariate components are represented in the Chebyshev basis. Results. The resulting algorithm is significantly faster than standard quadrature-based schemes for any target accuracy in the range [10 −6, 10 −2].
article type
publisher identifier
  • aa37149-19
Date Copyrighted
Rights
  • © ESO 2020
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata