Abstract
| - Since its launch in 1999, the XMM-Newton mission has compiled the largest catalogue of serendipitous X-ray sources, with the 3XMM being the third version of this catalogue. This was possible thanks to the combination of a large effective area (5000 cm 2 at 1 keV) and a wide field of view (30 arcmin). The 3XMM-DR6 catalogue contains about 470 000 unique X-ray sources over an area of 982 deg 2. A significant fraction of these (100 178 sources) have reliable optical, near-(NIR), and mid-infrared (MIR) counterparts in the SDSS, PANSTARRS, VIDEO, UKIDSS, and WISE surveys. In a previous paper we presented photometric redshifts for these sources using the TPZ machine-learning algorithm. About a quarter of these (22 677) have adequate photon statistics, meaning that a reliable X-ray spectrum can be extracted. Owing to both the X-ray counts selection and the optical counterpart constraint, the sample above is biased towards the bright sources. Here, we present XMMFITCAT-Z: a spectral fit catalogue for these sources using the Bayesian X-ray Analysis technique. To demonstrate the potential of the present catalogue, we comment on the optical and MIR colours of the 765 X-ray absorbed sources with NH > 10 22 cm −2. We show that a considerable fraction of X-ray-selected AGNs would not be classified as AGNs following the MIR W1-W2 versus W2 selection criterion. These are AGNs with lower luminosities, where the contribution of the host galaxy to the MIR emission is non-negligible. Only one-third of obscured AGNs in X-rays present red colours or r-W2 > 6. Also, it appears that the r-W2 criterion, often used in the literature for the selection of obscured AGNs, produces very different X-ray absorbed AGN samples compared to the standard X-ray selection criteria.
|