Documentation scienceplus.abes.fr version Bêta

À propos de : Finding the mechanism of wave energy flux damping in solar pores using numerical simulations        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Finding the mechanism of wave energy flux damping in solar pores using numerical simulations
Date
has manifestation of work
related by
Author
Abstract
  • Context. Solar magnetic pores are, due to their concentrated magnetic fields, suitable guides for magnetoacoustic waves. Recent observations have shown that propagating energy flux in pores is subject to strong damping with height; however, the reason is still unclear. Aims. We investigate possible damping mechanisms numerically to explain the observations. Methods. We performed 2D numerical magnetohydrodynamic (MHD) simulations, starting from an equilibrium model of a single pore inspired by the observed properties. Energy was inserted into the bottom of the domain via different vertical drivers with a period of 30 s. Simulations were performed with both ideal MHD and non-ideal effects. Results. While the analysis of the energy flux for ideal and non-ideal MHD simulations with a plane driver cannot reproduce the observed damping, the numerically predicted damping for a localized driver closely corresponds with the observations. The strong damping in simulations with localized driver was caused by two geometric effects, geometric spreading due to diverging field lines and lateral wave leakage.
article type
publisher identifier
  • aa40163-20
Date Copyrighted
Rights
  • © ESO 2021
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata