Documentation scienceplus.abes.fr version Bêta

À propos de : η Carinae with Fermi-LAT: two full orbits and the third periastron        

AttributsValeurs
type
Is Part Of
Subject
Title
  • η Carinae with Fermi-LAT: two full orbits and the third periastron
Date
has manifestation of work
related by
Author
Abstract
  • Context. Colliding-wind binaries are massive stellar systems featuring strong, interacting winds. These binaries may be actual particle accelerators, making them variable γ-ray sources due to changes in the wind collision region along the orbit. However, only two of these massive stellar binary systems have been identified as high-energy sources. The first and archetypical system of this class is η Carinae, a bright γ-ray source with orbital variability peaking around its periastron passage. Aims. The origin of the high-energy emission in η Carinae is still unclear, with both lepto-hadronic and hadronic scenarios being under discussion. Moreover, the γ-ray emission seemed to differ between the two periastrons previously observed with the Fermi-Large Area Telescope. Continuing observations might provide highly valuable information for understanding the emission mechanisms in this system. Methods. We have used almost 12 yr of data from the Fermi-Large Area Telescope. We studied both low- and high-energy components, searching for differences and similarities between both orbits, and we made use of this large dataset to search for emission from nearby colliding-wind binaries. Results. We show how the energy component above 10 GeV of η Carinae peaks months before the 2014 periastron, while the 2020 periastron is the brightest one to date. Additionally, upper limits are provided for the high-energy emission in other particle-accelerating colliding-wind systems. Conclusions. Current γ-ray observations of η Carinae strongly suggest that the wind collision region of this system is perturbed from orbit to orbit, affecting particle transport within the shock.
article type
publisher identifier
  • aa40451-21
Date Copyrighted
Rights
  • © ESO 2021
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata