Documentation scienceplus.abes.fr version Bêta

À propos de : The LOFAR Two-metre Sky Survey Deep Fields        

AttributsValeurs
type
Is Part Of
Subject
subtitle
  • A new analysis of low-frequency radio luminosity as a star-formation tracer in the Lockman Hole region
Title
  • The LOFAR Two-metre Sky Survey Deep Fields
Date
has manifestation of work
related by
Author
Abstract
  • We have exploited LOFAR deep observations of the Lockman Hole field at 150 MHz to investigate the relation between the radio luminosity of star-forming galaxies (SFGs) and their star-formation rates (SFRs), as well as its dependence on stellar mass and redshift. The adopted source classification, SFRs, and stellar masses are consensus estimates based on a combination of four different spectral energy distribution fitting methods. We note a flattening of the radio spectra of a substantial minority of sources below ∼1.4 GHz. Such sources have thus a lower ‘radio-loudness’ level at 150 MHz than expected from extrapolations from 1.4 GHz using the average spectral index. We found a weak trend towards a lower SFR/ L150 MHz ratio for higher stellar mass, M⋆. We argue that such a trend may account for most of the apparent redshift evolution of the L150 MHz/SFR ratio, in line with previous work. Our data indicate a weaker evolution than found by some previous analyses. We also find a weaker evolution with redshift of the specific SFR than found by several (but not all) previous studies. Our radio selection provides a view of the distribution of galaxies in the SFR- M⋆ plane complementary to that of optical and near-IR selection. It suggests a higher uniformity of the star-formation history of galaxies than implied by some analyses of optical and near-IR data. We have derived luminosity functions at 150 MHz of both SFGs and radio-quiet (RQ) AGN at various redshifts. Our results are in very good agreement with the T-RECS simulations and with literature estimates. We also present explicit estimates of SFR functions of SFGs and RQ AGN at several redshifts derived from our radio survey data.
article type
publisher identifier
  • aa41286-21
Date Copyrighted
Rights
  • © ESO 2021
Rights Holder
  • ESO
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata