Documentation scienceplus.abes.fr version Bêta

À propos de : Probing the interstellar medium of the quasar BRI 0952−0115        

AttributsValeurs
type
Is Part Of
Subject
subtitle
  • An analysis of [C  II], [C  II], CO, OH, and H2O
License
Title
  • Probing the interstellar medium of the quasar BRI 0952−0115
Date
has manifestation of work
related by
Author
Abstract
  • Context. The extent of the effect of active galactic nuclei (AGN) on their host galaxies at high-redshift is not apparent. The processes governing the co-eval evolution of the stellar mass and the mass of the central supermassive black hole, along with the effects of the supermassive black hole on the host galaxy, remain unclear. Studying this effect in the distant universe is a difficult process as the mechanisms of tracing AGN activity can often be inaccurately associated with intense star formation and vice versa. Aims. Our aim is to better understand the processes governing the interstellar medium (ISM) of the quasar BRI 0952−0952 at z = 4.432, specifically with regard to the individual heating processes at work and to place the quasar in an evolutionary context. Methods. We analyzed ALMA archival bands 3, 4, and 6 data and combined the results with high-resolution band-7 ALMA observations of the quasar. We detected [C  I](2-1), [C  II]( 2P 3/2 − 2P 1/2), CO(5-4), CO(7-6), CO(12-11), OH 2Π 1/2(3/2 − 1/2), and H 2O(2 11 − 2 02), and we report a tentative detection of OH +. We updated the lensing model and we used the radiative transfer code MOLPOP-CEP to produce line emission models which we compared with our observations. Results. We used the [C  I] line emission to estimate the total molecular gas mass in the quasar. We present results from the radiative transfer code MOLPOP-CEP constraining the properties of the CO emission and suggest different possible scenarios for heating mechanisms within the quasar. We extended our results from MOLPOP-CEP to the additional line species detected in the quasar to place stronger constraints on the ISM properties. Conclusions. Modeling from the CO SLED suggests that there are extreme heating mechanisms operating within the quasar in the form of star formation or AGN activity; however, with the current data, it remains unclear which of the two is the preferred mechanism as both models reasonably reproduce the observed CO line fluxes. The updated lensing model suggests a velocity gradient across the [C  II] line, suggestive of ongoing kinematical processes within the quasar. We find that the H 2O emission in BRI 0952 is likely correlated with star-forming regions of the ISM. We used the molecular gas mass from [C  I] to calculate a depletion time for the quasar. We conclude that BRI 0952−0952 is a quasar with a significant AGN contribution while also showing signs of extreme starburst activity, indicating that the quasar could be in a transitional phase between a starburst-dominated stage and an AGN-dominated stage.
article type
publisher identifier
  • aa47453-23
Date Copyrighted
Rights
  • © The Authors 2024
Rights Holder
  • The Authors
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata