Attributs | Valeurs |
---|
type
| |
Is Part Of
| |
Subject
| |
Title
| - Weighted energy-dissipation functionals for gradient flows
|
Date
| |
has manifestation of work
| |
related by
| |
Author
| |
Abstract
| - We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ ESAIM: COCV14 (2008) 494-516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids56 (2008) 1885-1904.].
|
article type
| |
publisher identifier
| |
Date Copyrighted
| |
Rights
| - © EDP Sciences, SMAI, 2009
|
Rights Holder
| |
is part of this journal
| |
is primary topic
of | |