Abstract
| - In the low-mass regime, it is found that the gas-phase abundances of C-bearing molecules in cold starless cores rapidly decrease with increasing density. Here the molecules tend to stick to the grains, forming ice mantles. We study CO depletion in the TOP100 sample of the ATLASGAL survey, and investigate its correlation with evolutionary stage and with the physical parameters of the sources. We use low-J emission lines of CO isotopologues and the dust continuum emission to infer the depletion factor fD. RATRAN one-dimensional models were also used to determine fD and to investigate the presence of depletion above a density threshold. The isotopic ratios and optical depth were derived with a Bayesian approach. We find a significant number of clumps with a large CO depletion, up to ∼20. Larger values are found for colder clumps, thus for earlier evolutionary phases. For massive clumps in the earliest stages of evolution we estimate the radius of the region where CO depletion is important to be a few tenths of a pc. CO depletion in high-mass clumps seems to behave as in the low-mass regime, with less evolved clumps showing larger values for the depletion than their more evolved counterparts, and increasing for denser sources.
|