Attributs | Valeurs |
---|
type
| |
Is Part Of
| |
Subject
| |
Title
| - Nonlinear multi-harmonic finite-element simulation of a capacitor motor
|
Date
| |
has manifestation of work
| |
related by
| |
Author
| |
Abstract
| - Steady-state operation modes of three-phase induction machines can be efficiently simulated by 2D nonlinear time-harmonic finite-element models, although only induced currents with respect to the fundamental air-gap field are correctly taken into account. This technique does not generalise to single-phase induction machines. An approach based on multiple rotor models and a spectral decomposition of the air-gap field enables to consider higher harmonic air-gap field contributions. In a capacitor-motor model, the first, third and fifth forward and backward rotating components give raise to different frequencies in the rotor which result in different eddy-current effects. The torque dip due to the third harmonic is accurately simulated.
|
article type
| |
publisher identifier
| |
Date Copyrighted
| |
Rights
| |
Rights Holder
| |
is part of this journal
| |
is primary topic
of | |