Documentation scienceplus.abes.fr version Bêta

À propos de : A numerical scheme for the quantum Boltzmann equation with stiff collision terms        

AttributsValeurs
type
Is Part Of
Subject
Title
  • A numerical scheme for the quantum Boltzmann equation with stiff collision terms
Date
has manifestation of work
related by
Author
Abstract
  • Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625-7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian (Bose-Einstein or Fermi-Dirac distribution) at each time step and every mesh point, one has to invert a nonlinear equation that connects the macroscopic quantity fugacity with density and internal energy. Setting a good initial guess for the iterative method is troublesome in most cases because of the complexity of the quantum functions (Bose-Einstein or Fermi-Dirac function). In this paper, we propose to penalize the quantum collision term by a ‘classical’ BGK operator instead of the quantum one. This is based on the observation that the classical Maxwellian, with the temperature replaced by the internal energy, has the same first five moments as the quantum Maxwellian. The scheme so designed avoids the aforementioned difficulty, and one can show that the density distribution is still driven toward the quantum equilibrium. Numerical results are presented to illustrate the efficiency of the new scheme in both the hydrodynamic and kinetic regimes. We also develop a spectral method for the quantum collision operator.
article type
publisher identifier
  • m2an110051
Date Copyrighted
Rights
  • © EDP Sciences, SMAI, 2011
Rights Holder
  • EDP Sciences, SMAI
is part of this journal
is primary topic of



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata