The paper presents theoretical and numerical results on the identifiability, i.e. the unique identification for the one-dimensional sine-Gordon equation. The identifiability for nonlinear sine-Gordon equation remains an open question. In this paper we establish the identifiability for a linearized sine-Gordon problem. Our method consists of a careful analysis of the Laplace and Fourier transforms of the observation of the system, conducted at a single point. Numerical results based on the best fit to data method confirm that the identification is unique for a wide choice of initial approximations for the sought test parameters. Numerical results compare the identification for the nonlinear and the linearized problems.