Abstract
| - This paper uses the Rice method [18] to give bounds to the distribution of the maximum of a smooth stationary Gaussian process. We give simpler expressions of the first two terms of the Rice series [3,13] for the distribution of the maximum. Our main contribution is a simpler form of the second factorial moment of the number of upcrossings which is in some sense a generalization of Steinberg et al.'s formula ([7] p. 212). Then, we present a numerical application and asymptotic expansions that give a new interpretation of a result by Piterbarg [15].
- Dans cet article nous utilisons la méthode de Rice (Rice, 1944-1945) pour trouver un encadrement de la fonction de répartition du maximum d'un processus Gaussien stationnaire régulier. Nous dérivons des expressions simplifiées des deux premiers termes de la série de Rice (Miroshin, 1974, Azaïs et Wschebor, 1997) suffisants pour l'encadrement cherché. Notre contribution principale est la donnée d'une forme plus simple du second moment factoriel du nombre de franchissements vers le haut, ce qui est, en quelque sorte, une généralisation de la formule de Steinberg et al. (Cramér and Leadbetter, 1967, p. 212). Nous présentons ensuite une application numérique et des développements asymptotiques qui fournissent une nouvelle interprétation d'un résultat de Piterbarg (1981).
|