Attributs | Valeurs |
---|
type
| |
Is Part Of
| |
Subject
| |
Title
| - Accumulation and remobilization of amino acids during senescence of detached and attached leaves: in planta analysis of tryptophan levels by recombinant luminescent bacteria
|
has manifestation of work
| |
related by
| |
Author
| |
Abstract
| - The process of leaf senescence is biochemically characterized by the transition from nutrient assimilation to nutrient remobilization. The nutrient drain by developing vegetative and reproductive structures has been implicated in senescence induction. The steady-state levels of amino acids in senescing leaves are dependent on the rate of their release during protein degradation and on the rate of efflux into growing structures. To determine the possible regulatory role of amino acid content in leaf senescence, an in planta non-destructive, semi-quantitative method for the analysis of endogenous levels of free amino acids has been developed. The method is based on in vivo bioluminescence of amino acid-requiring strains of recombinant Escherichia coli carrying the lux gene. The luminescence signal was found to be proportional to the levels of added exogenous tryptophan and to the free amino acid levels in the plant tissues analysed. During the senescence of tobacco flowers and of detached leaves of oats and Arabidopsis, a progressive increase in the levels of free amino acids was monitored. By contrast to the detached leaves, the attached oat leaves displayed a decrease in the levels of free amino acids during senescence. In Arabidopsis, both the attached and detached leaves exhibited a similar pattern of gradual increase in amino acid content during senescence. The differences between the sink-source balance of the two species and the possible relationships between amino acid content and leaf senescence are discussed.
|
article type
| |
is part of this journal
| |