Abstract
| - Isoniazid resistance in Mycobacterium tuberculosis has been associated with total deletion of the katG gene, which codes for catalase-peroxidase production. To determine whether this is a common mechanism of drug resistance, 9 isolates of isoniazid-resistant and 1 of isoniazid-sensitive M. tuberculosis were analyzed by polymerase chain reaction amplification of a 237-bp sequence of the katG gene. Amplification was observed in the isoniazid-sensitive isolate and in 8 resistant isolates; in only 1 isoniazid-resistant isolate was there no amplification of the expected band, suggesting gene deletion. DNA sequencing showed that 8 of the 9 isolates had point mutations, deletions, or insertions of 1-3 bases. Evidence corroborating the presence of mutations in the katG gene was obtained by single-strand conformation polymorphism analysis in these 8 isolates. Thus, mutations as well as insertions and deletions in the katG gene can account for inactive catalase peroxidase, leading to isoniazid resistance; gene deletion occurs only infrequently, in ∼11% of cases.
|