Documentation scienceplus.abes.fr version Bêta

À propos de : Two-body relaxation in modified Newtonian dynamics        

AttributsValeurs
type
Is Part Of
Subject
Title
  • Two-body relaxation in modified Newtonian dynamics
has manifestation of work
related by
Author
Abstract
  • Abstract. A naive extension to modified Newtonian dynamics (MOND) of the standard computation of the two-body relaxation time t2b implies that t2b is comparable to the crossing time regardless of the number N of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of t2b is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case, we find that in the deep-MOND regime t2b scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Near the centre of a spherical system that is in the deep-MOND regime, we show that the fluctuating component of the gravitational force is never small compared to the mean-field force; this conclusion surprisingly even applies to systems with a density cusp that keeps the mean-field force constant to arbitrarily small radius, and suggests that a cuspy centre can never be in the deep-MOND regime. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in groups and clusters of galaxies, two-body relaxation should have substantially modified the density profiles of galaxy groups, while objects with masses in excess of ∼10 M⊙ should have spiralled to the centres of dwarf galaxies.
article type
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata