Documentation scienceplus.abes.fr version Bêta

À propos de : ISINA: INTEGRAL Source Identification Network Algorithm        

AttributsValeurs
type
Is Part Of
Subject
Title
  • ISINA: INTEGRAL Source Identification Network Algorithm
has manifestation of work
related by
Author
Abstract
  • We give an overview of ISINA: INTEGRAL Source Identification Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. First, we introduce the data set and the problems encountered when dealing with images obtained using the coded mask technique. The initial step of source candidate searching is introduced and an initial candidate list is created. A description of the feature extraction on the initial candidate list is then performed together with feature merging for these candidates. Three training and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky. Three independent random forests are built: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples.
article type
is part of this journal



Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata